DESIGN CALCULATION OF (G+III) STORIED RESIDENTIAL BUILDING AT PRE. NO. -111, DIAMOND, IN WARD NO. - 143, BOROUGH NO. - XVI, UNDER K.M.C., [JOKA UNIT], KOLKATA.

PRANAB KUMAR DAS B.E.(CIVIL)
K.M.C. E.S.E.No.-I/131

Relevant codes used are :-

(1) I.S. - 456-2000
(2) S.P.- 16-1980

Assumption taken in design :-
(1) Grade of conc. Used - M20
(2) Grade of steel used - Fe- 500
(3) Bearing capacity of soil - As per soil report.
(4) Design based on:-
(a) Working stress method for slab, footing, \& column.
(b) Limit stress method for beam.
(5) Calculation of loading :-
(A) Roof load :-
(a) D.L. of roof slab $=0.1 \times 2500=250 \mathrm{Kg} / \mathrm{sq} \mathrm{m}$
(b) D.L. of C.P. $=30 \mathrm{Kg} / \mathrm{sq} \mathrm{m}$
(c) D.L. of roof treatment $=160 \mathrm{Kg} / \mathrm{sq} \mathrm{m}$
(d) Live load $\quad=150 \mathrm{Kg} / \mathrm{sq} \mathrm{m}$

Total $=590 \mathrm{Kg} / \mathrm{sq} \mathrm{m}$
(B) Floor load :-
(a) D.L. of floor slab $=250 \mathrm{Kg} / \mathrm{sq} \mathrm{m}$
(b) D.L. of C.P. $\quad=30 \mathrm{Kg} / \mathrm{sq} \mathrm{m}$
(c) D.L. of F.F. $=120 \mathrm{Kg} / \mathrm{sq} \mathrm{m}$
(d) Live Load $\quad=200 \mathrm{Kg} / \mathrm{sq} \mathrm{m}$

$$
\text { Total }=600 \mathrm{Kg} / \mathrm{sq} \mathrm{~m}
$$

Design of R.C.C. slab:-

Max. shorter span $=3825 \mathrm{~mm}$.
Span to eff. Depth ratio $=26$
Using 0.2% steel, 'd' reqd. $=3825 /(26 \times 1.6)=92 \mathrm{~mm}$.
' D ' reqd. $=(92+19)=111 \mathrm{~mm}$.
Let us provide overall depth $=110 \mathrm{~mm}$.
$' d$ ' $=(110-19)=91 \mathrm{~mm}$.

Panel Mkd.	Dimensions	Ly/Lx	End conditions	Moment co-efficient			
			αx	αy	αx^{\prime}	αy^{\prime}	
P1	3625×3125	1.16	Two adjacent edges discont.	0.045	0.035	0.060	0.047
P2	4125×3825	1.08	One long edge discont.	0.033	0.028	0.044	0.037

$W=0.625 \mathrm{t} / \mathrm{sq} \mathrm{m}$.

Panel	$M=(L x)^{2} . W . \alpha$			Ast $=[M /(\sigma s t . j . d)] \times 10^{7}$ in sq m				
Mkd.	Mx	My	$M x^{\prime}$	My'	Astx	Asty	Astx'	Asty'
P1	0.275	0.214	0.367	0.287	143	112	191	149
P2	0.302	0.256	0.403	0.339	157	133	210	176

Spacing reqd. (mm.)				Spacing providing (mm.)			
Sx	Sy	Sx'	Sy' $^{\prime}$	Sx1	Sy1	Sx1'	Sy1'
349	446	261	335	270	270	260	270
318	375	238	284	270	270	230	270

Spacing $=($ Area of each bar $\times 1000) /$ Ast
Max. spacing $=3 \mathrm{~d}=3 \times 91=273 \mathrm{~mm}$ say 270 mm .

Load chart : -

Col. Mkd.	Load in ' t '	Group
C01	33.97	V
C02	28.14	V
C03	20.60	V
C04	26.14	V
C05	39.33	IV
C06	39.06	IV
C07	38.03	IV
C08	36.11	IV
C09	46.41	III
C10	22.08	V
C11	70.38	I
C12	53.15	III
C13	56.90	II
C14	69.74	I
C15	73.66	I
C16	57.87	II
C17	51.34	III
C18	63.00	II
C19	49.07	III
C20	42.70	IV
C21	33.35	V
C22	32.56	V
C23	41.76	IV
C24	40.09	IV

Design of R.C.C. column (Gr.- I)
$\mathrm{P}=73.66 \mathrm{t}$.
Considering col. Size $=250 \times 400 \mathrm{~mm}$.
$\mathrm{L}=3.375 \mathrm{~m}$.
Leff $=0.65 \times 3.375=2.194 \mathrm{~m}$.
Leff/b $=8.775 \quad$ [Hence short col.]
Now, $73.66 \times 10^{4}=5(250 \times 400-A s c)+190$ Asc
Asc = 1279 sq mm .
As per I.S. Code, minimum reinforcement $=0.8 \%=800 \mathrm{sq} \mathrm{mm}$.
Considering seismic \& wind load, let us provide column size 250×450 with 12-16 tor. as longitudinal bars with 8 tor.-4L-lateral ties @ 175 mm c/c.

Design of R.C.C. column (Gr.- II)

$\mathrm{P}=63 \mathrm{t}$.
Considering col. Size $=250 \times 400 \mathrm{~mm}$.
Now, $63 \times 10^{4}=5(250 \times 400-$ Asc $)+190$ Asc
Asc $=703 \mathrm{sq} \mathrm{mm}$.
As per I.S. Code, minimum reinforcement $=0.8 \%=800 \mathrm{sq} \mathrm{mm}$.
Considering seismic \& wind load, let us provide column size 250×400 with 10-16 tor. as longitudinal bars with 8 tor.-4L-lateral ties @ 175 mm c/c.

Design of R.C.C. column (Gr.- III)

$\mathrm{P}=53.15 \mathrm{t}$.
Considering col. Size $=250 \times 350 \mathrm{~mm}$.
Now, $53.15 \times 10^{4}=5(250 \times 350-A s c)+190$ Asc
Asc $=508 \mathrm{sq} \mathrm{mm}$.
As per I.S. Code, minimum reinforcement $=0.8 \%=700 \mathrm{sq} \mathrm{mm}$.
Considering seismic \& wind load, let us provide column size 250×400 with $8-16$ tor. as longitudinal bars with 8 tor.-4L-lateral ties @ 175 mm c/c.

Design of R.C.C. col. footing (Gr.- II):-

Total load, $\mathrm{P}=63 \mathrm{t}$.
Considering bearing capacity of soil $=8.1 \mathrm{t}$./sq m .
Reqd. area of footing $=(63 \times 1.1) / 8=8.56 \mathrm{sq} \mathrm{m}$.
Provided area of footing $=2.9 \mathrm{~m} \times 2.9 \mathrm{~m}$
Upward soil pressure $=63 /(2.9 \times 2.9)=7.49 \mathrm{t} . / \mathrm{sq} \mathrm{m}$.
Pedestal size $=450 \times 600 \mathrm{~mm}$.
B.M. at the face of pedestal $=\left(7.49 \times 2.9 \times 1.225^{2}\right) / 2=16.3 \mathrm{t}-\mathrm{m}$.
' d ' reqd. $=\left[\left(16.3 \times 10^{7}\right) /(0.914 \times 2900)\right]^{0.5}=248 \mathrm{~mm}$.
Let us provide overall depth $=500 \mathrm{~mm}$.
' d ' = 432 mm .

CHECK FOR ONE WAY SHEAR :~

' V ' at a distance ' d ' from the face of the pedestal $=7.49 \times 2.9 \times 0.793=17.23 \mathrm{t}$.
$\tau \mathrm{V}=\left[17.23 \times 10^{4}\right] /[2900 \times 432]=0.137 \mathrm{~N} / \mathrm{sq} \mathrm{mm} \quad<\mathrm{K} . \tau \mathrm{C}=0.24 \mathrm{~N} / \mathrm{sq} \mathrm{mm}$.

CHECK FOR TWO-WAY SHEAR.

' V ' at a distance $\mathrm{d} / 2$ from the face of the pedestal $=7.49\left[2.9^{2}-(1.032 \times 0.882)\right]=56.17 \mathrm{t}$. $\tau \mathrm{V}=\left[56.17 \times 10^{4}\right] /[2900 \times 432]=0.45 \mathrm{~N} / \mathrm{sq} \mathrm{mm} \quad<\mathrm{Ks} . \tau \mathrm{c}=0.62 \mathrm{~N} / \mathrm{sq} \mathrm{m}$.
Ast $=\left[16.3 \times 10^{7}\right] /[0.92 \times 230 \times 432]=1784 \mathrm{sq} \mathrm{mm}$.
Spacing $=[113 \times 2900] / 1784=183 \mathrm{~mm} \mathrm{c} / \mathrm{c}$.

Let us provide 12 tor. @ 175 mm c/c, in the both directions.

Design of R.C.C. col. footing (Gr.- III) :-

Total load, $\mathrm{P}=53.15 \mathrm{t}$.
Reqd. area of footing $=(53.15 \times 1.1) / 8.1=7.22 \mathrm{sq} \mathrm{m}$.
Provided area of footing $=2.7 \mathrm{~m} \times 2.7 \mathrm{~m}$
Upward soil pressure $=53.15 /(2.7 \times 2.7)=7.29 \mathrm{t} . / \mathrm{sq} \mathrm{m}$.
Pedestal size $=450 \times 600 \mathrm{~mm}$.
B.M. at the face of pedestal $=\left(7.29 \times 2.7 \times 1.125^{2}\right) / 2=12.46 \mathrm{t}-\mathrm{m}$.

Let us provide overall depth $=450 \mathrm{~mm}$.
'd' = 382 mm .
Ast $=\left[12.46 \times 10^{7}\right] /[0.92 \times 230 \times 382]=1542 \mathrm{sq} \mathrm{mm}$.
Spacing $=[113 \times 2700] / 1542=197 \mathrm{~mm} \mathrm{c} / \mathrm{c}$.
Let us provide 12 tor. @ 175 mm c/c, in the both directions.

DESIGN OF R.C.C. COMBINED STRIP-FOOTING [C9,C10,C11,C14,C15]

$P=282.27 \mathrm{t}$.
Area of footing reqd. $=(282.27 \mathrm{X} 1.1) / 6.7=46.65 \mathrm{sq} \mathrm{m}$.
Area of footing provided $=41.86 \mathrm{sq} \mathrm{m}$.
Let us provide 400 mm wide rib beam.
Net upward soil pressure $=6.05 \mathrm{t} / \mathrm{sq} \mathrm{m}$.

Design of footing slab.

Considering 1 m wide footing.
B.M. at the face of the rib beam $=4.36 \mathrm{t}-\mathrm{m}$.
'd' reqd. $=\left[\left(4.36 \times 10^{7}\right) /(0.914 \times 1000)\right]^{0.5}=219 \mathrm{~mm}$.
Let us provide overall depth $=400 \mathrm{~mm}$.
'd' = 332 mm .
Ast $=\left[4.36 \times 10^{7}\right] /[0.92 \times 230 \times 332]=621 \mathrm{sq} \mathrm{mm}$.
Spacing $=[113 \times 1000] / 621=181 \mathrm{~mm} \mathrm{c} / \mathrm{c}$.
Let us provide 12 tor. @ 175 mm c/c, in both directions.

DESIGN OF RIB BEAM [RB1]:-

Design moment, $\mathrm{M}=12.89 \times 10^{7} \mathrm{~N}-\mathrm{mm}$.
$\mathrm{Mu}=19.34 \times 10^{7} \mathrm{~N}-\mathrm{mm}$.
Considering beam size $=500 \times 550 \mathrm{~mm}$.
' d ' $=(550-50-16-8)=476 \mathrm{~mm}$.
$\mathrm{Mu}, \lim .=2.07 \times 500 \times 476^{2}=23.45 \times 10^{7} \mathrm{~N}-\mathrm{mm}>\mathrm{Mu}$.
$\mathrm{Mu} /\left(\mathrm{b} . \mathrm{d}^{2}\right)=1.7 \mathrm{~N} / \mathrm{sq} \mathrm{mm} . \quad \mathrm{Pt}=0.44$
Ast $=(500 \times 476 \times 0.44) / 100=1048 \mathrm{sq} \mathrm{mm}$.

Let us provide (4-16 tor. $+2-16$ tor.) at bottom \& 4-16 tor. at top for supports and (4-16 tor. $+2-12$ tor.) at top \& 4-16 tor. at bottom for span.

DESIGN OF SHEAR REINFORCEMENT :~

Design shear force, $\mathrm{V}=214 \mathrm{Kn}$.
$\mathrm{Vu}=321 \mathrm{Kn}$.
100Ast/(b.d) $=0.507$
$\tau C=0.48 \mathrm{~N} / \mathrm{sq} \mathrm{mm}$.
Vus $=321-(0.48 \times 500 \times 476) / 1000=206.76 \mathrm{Kn}$.
Vus/d = $4.3447 \mathrm{Kn} / \mathrm{cm}$.
Let us provide 8 tor.-4L-vertical stirrups @ 170 c/c, throughout the length.

DESIGN OF R.C.C. BEAM [B1]:-

Design moment, $\mathrm{M}=6.25 \times 10^{7} \mathrm{~N}-\mathrm{mm}$.
$\mathrm{Mu}=9.38 \times 10^{7} \mathrm{~N}-\mathrm{mm}$.
Considering beam size $=250 \times 400 \mathrm{~mm}$.
$' d$ ' $=(400-25-8)=367 \mathrm{~mm}$.
Mu,lim. $=2.07 \times 250 \times 367^{2}=6.97 \times 10^{7} \mathrm{~N}-\mathrm{mm}<\mathrm{Mu}$ (Double reinforced).
$\mathrm{Mu} /\left(\mathrm{b} . \mathrm{d}^{2}\right)=2.79 \mathrm{~N} / \mathrm{sq} \mathrm{mm} . \quad \mathrm{d}^{\prime} / \mathrm{d}=0.1$
$\mathrm{Pt}=0.968 \quad \mathrm{Pc}=0.012$
Ast $=(250 \times 367 \times 0.968) / 100=889 \mathrm{sq} \mathrm{mm}$.
Asc $=(250 \times 367 \times 0.012) / 100=11 \mathrm{sq} \mathrm{mm}$.
Let us provide 5-16 tor. at top \& 2-16 tor at bottom for supports \& 2-16 tor. at top and 4-16 tor. at bottom for span.

DESIGN OF SHEAR REINFORCEMENT :~

Design shear force, $\mathrm{V}=76.8 \mathrm{Kn}$.
$\mathrm{Vu}=115.2 \mathrm{Kn}$.
100Ast/(b.d) $=1.095$
$\tau \mathrm{c}=0.62 \mathrm{~N} / \mathrm{sq} \mathrm{mm}$.
Vus $=115.2-(0.62 \times 250 \times 367) / 1000=58.32 \mathrm{Kn}$.
Vus/d $=1.589 \mathrm{Kn} / \mathrm{cm}$.
Let us provide 8 tor.-2L-vertical stirrups @ 175 c/c throughout the span.

DESIGN OF R.C.C. BEAM [B2]:-

Design moment, $\mathrm{M}=5.03 \times 10^{7} \mathrm{~N}-\mathrm{mm}$.
$\mathrm{Mu}=7.55 \times 10^{7} \mathrm{~N}-\mathrm{mm}$.
Considering beam size $=250 \times 350 \mathrm{~mm}$.
' d ' $=(350-25-8)=317 \mathrm{~mm}$.
Mu, lim. $=2.07 \times 250 \times 317^{2}=5.2 \times 10^{7} \mathrm{~N}-\mathrm{mm}<\mathrm{Mu}$ (Double reinforced).
$\begin{array}{lll}\mathrm{Mu} /\left(\mathrm{b} . \mathrm{d}^{2}\right)=3 \mathrm{~N} / \mathrm{sq} \mathrm{mm} . & \mathrm{P}=0.299 & \mathrm{~d} / \mathrm{d}=0.1 \\ \mathrm{Pt}=1.003 & \mathrm{Pc}=0.29\end{array}$
Ast $=(250 \times 317 \times 1.003) / 100=795 \mathrm{sq} \mathrm{mm}$.
Asc $=(250 \times 317 \times 0.299) / 100=237 \mathrm{sq} \mathrm{mm}$.
Let us provide 4-16 tor. at top \& 2-16 tor at bottom for supports \& 2-16 tor. at top and $4-16$ tor. at bottom for span.

DESIGN OF SHEAR REINFORCEMENT :~

Design shear force, $\mathrm{V}=45.1 \mathrm{Kn}$.
$\mathrm{Vu}=67.65 \mathrm{Kn}$.
100Ast/(b.d) $=1.014$
$\tau \mathrm{C}=0.6 \mathrm{~N} / \mathrm{sq} \mathrm{mm}$.
Vus $=67.65-(0.6 \times 250 \times 317) / 1000=20.1 \mathrm{Kn}$.
Vus/d = $0.634 \mathrm{Kn} / \mathrm{cm}$.
Let us provide 8 tor.-2L-vertical stirrups @ 175 c/c throughout the span.

